A study of autonomous underwater vehicle hull forms using computational fluid dynamics

Author(s):  
T. Sarkar ◽  
P. G. Sayer ◽  
S. M. Fraser
2011 ◽  
Vol 8 (2) ◽  
pp. 149-163 ◽  
Author(s):  
R Sakthivel ◽  
S Vengadesan ◽  
S K Bhattacharyya

This paper addresses the Computational Fluid Dynamics Approach (CFD) to simulate the flow over underwater axisymmetric bodies at higher angle of attacks.  Three Dimensional (3D) flow simulation is carried out over MAYA Autonomous Underwater Vehicle (AUV) at a Reynolds number (Re) of 2.09×106. These 3D flows are complex due to cross flow interaction with hull which produces nonlinearity in the flow. Cross flow interaction between pressure side and suction side is studied in the presence of angle of attack. For the present study standard k-ε model, non-linear k-ε model models of turbulence are used for solving the Reynolds Averaged Navier-Stokes Equation (RANS). The non-linear k-ε turbulence model is validated against DARPA Suboff axisymmetric hull and its applicability for flow simulation over underwater axisymmetric hull is examined. The non-linear k-ε model performs well in 3D complex turbulent flows with flow separation and flow reattachment.  The effect of angle of attack over flow structure, force coefficients and wall related flow variables are discussed in detail. Keywords: Computational Fluid Dynamics (CFD); Autonomous Underwater Vehicle (AUV); Reynolds averaged Navier-Stokes Equation (RANS); non-linear k-ε turbulence modeldoi: http://dx.doi.org/10.3329/jname.v8i2.6984   Journal of Naval Architecture and Marine Engineering 8(2011) 149-163


2014 ◽  
Vol 26 (3) ◽  
pp. 391-393
Author(s):  
Yogo Takada ◽  
◽  
Keisuke Koyama ◽  
Takahiro Usami

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260003/13.jpg"" width=""300"" />Structure of BREAM </span></div> Based on our robotic fish studies since 2003, this paper introduces a FPGA offline control underwater searcher (FOCUS) and a bream robot equipped with advanced mechanism (BREAM). The performance of the first FOCUS prototype, built in 2011, is now being improved. FOCUS has 2 cameras and fieldprogrammable gate arrays (FPGAs) with high arithmetic processing capabilities. The appearance of the FOCUS is so cute. The two FOCUS types now available are an autonomous underwater vehicle (AUV) and a remotely operated vehicle (ROV). BREAM, in contrast, is an entertainment robot prototype designed for Asutamuland Tokushima exhibition. BREAM has four joints based on analytical computational fluid dynamics (CFD) results showing that robotic fish with multiple joints achieve better propulsion performance than that with single joint. Two of the four joints are used for propulsion and two are used for turning the prototype. RC-FOCUS is also exhibited at Asutamuland Tokushima, together with BREAM. </span>


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 204
Author(s):  
Kamran Fouladi ◽  
David J. Coughlin

This report presents the development of a fluid-structure interaction model using commercial Computational fluid dynamics software and in-house developed User Defined Function to simulate the motion of a trout Department of Mechanical Engineering, Widener University holding station in a moving water stream. The oscillation model used in this study is based on the observations of trout swimming in a respirometry tank in a laboratory experiment. The numerical simulations showed results that are consistent with laboratory observations of a trout holding station in the tank without obstruction and trout entrained to the side of the cylindrical obstruction. This paper will be helpful in the development of numerical models for the hydrodynamic analysis of bioinspired unmanned underwater vehicle systems.


2015 ◽  
Author(s):  
Srikanth Asapana ◽  
Prasanta K. Sahoo ◽  
Vaibhav Aribenchi

This paper attempts to undertake a comparative analysis of resistance characteristics between newly developed asymmetrical catamaran hull forms which were derived from existing conventional NPL series of round bilge catamaran hull forms by Molland, Wellicome and Couser (1994). A set of asymmetrical catamaran hull forms with waterline length of 1.6 m with a separation ratio (s/L) of 0.4 were generated by using standard modelling software. The resistance analysis had been carried out by using STAR CCM+, a computational fluid dynamics package for Froude numbers of 0.25, 0.30, 0.60, 0.80 and 1.0. Literature survey indicates that there is scant historical background in public domain to perform resistance analysis on asymmetrical catamaran hull forms. As this is not feasible due to lack of data in areas that were considered crucial, separate resistance analysis is carried out for each hull configuration. Finally, the compared resistance results will attempt to conclude whether asymmetrical catamaran hull forms are more efficient than the conventional catamaran hull forms.


Author(s):  
Arnt-Lennard Fuglestad ◽  
Mads Grahl-Madsen

The present paper report on a comparison between experimental obtained data for the drag force acting on a model prototype of the HUGIN 3000 and data obtained from a Computer Aided Analysis of the drag force carried out by CFD (Computational Fluid Dynamics). The HUGIN 3000 was developed in the nineties, by Kongsberg Maritime and FFI (Norwegian Defence Research Establishment). The experimental results in this paper, origins from a model test carried out by Marintek. The range of Reynolds number for both the experimental data and the computational results is 2.707×106 to 1.146×107. The agreement between the experimental data and the computed results is good. Particularly for the highest Reynolds numbers, the prediction of drag force by CFD seems to be remarkable good.


2019 ◽  
Vol 18 (4) ◽  
pp. 413-421
Author(s):  
Ninh Cong Toan ◽  
Ngo Van He

In marine transportation, aerodynamic performance is important for the ships, especially for the small passenger fast ships. It has affected the service speed, air resistance acting on hull, power energy as well as roll, pitch, yaw and stability of the ships. Moreover, the aerodynamic performance also directly affects the passengers, captains or employments who work on the ships. For a bad aerodynamic performance hull shape, it may make an accident in marine transportation. In this paper, the authors present a study on effect of hull shape on aerodynamic performance of a small passenger fast ship by using a commercial Computational Fluid Dynamics (CFD). Several hull forms with different shapes are proposed and computed to show their aerodynamic performances. From the comparison between different CFD results of the ships, the effects of hull shape on aerodynamic performances of the ships  are understood.


Sign in / Sign up

Export Citation Format

Share Document